BDNF and NT-3 increase velocity of activity front propagation in unidimensional hippocampal cultures.

نویسندگان

  • Shimshon Jacobi
  • Jordi Soriano
  • Elisha Moses
چکیده

Neurotrophins are known to promote synapse development as well as to regulate the efficacy of mature synapses. We have previously reported that in two-dimensional rat hippocampal cultures, brain-derived neurotrophic factor (BDNF) and neurotrophin-3 significantly increase the number of excitatory input connections. Here we measure the effect of these neurotrophic agents on propagating fronts that arise spontaneously in quasi-one-dimensional rat hippocampal cultures. We observe that chronic treatment with BDNF increased the velocity of the propagation front by about 30%. This change is attributed to an increase in the excitatory input connectivity. We analyze the experiment using the Feinerman-Golomb/Ermentrout-Jacobi/Moses-Osan model for the propagation of fronts in a one-dimensional neuronal network with synaptic delay and introduce the synaptic connection probability between adjacent neurons as a new parameter of the model. We conclude that BDNF increases the number of excitatory connections by favoring the probability to form connections between neurons, but without significantly modifying the range of the connections (connectivity footprint).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

BDNF and NT-3 increase excitatory input connectivity in rat hippocampal cultures.

The neurotrophic factors brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) have been shown to promote excitatory and inhibitory synapse development. However, a quantitative analysis of their influence on connectivity has proven in general difficult to achieve. In this work we use a novel experimental approach based on percolation concepts that provides a quantification of the a...

متن کامل

Cultured hippocampal neurons show responses to BDNF, NT-3, and NT-4, but not NGF.

To investigate the possibility of neurotrophins acting directly on hippocampal neurons, we first examined expression of the trk receptors in sections of adult rat brain and in cultures of embryonic rat hippocampus, and then investigated general and specific responses of cultured hippocampal neurons to each of the neurotrophins. In situ hybridization studies indicated high levels of expression o...

متن کامل

Neurotrophins induce formation of functional excitatory and inhibitory synapses between cultured hippocampal neurons.

Cell cultures were used to analyze the role of brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) in the development of synaptic transmission. Neurons obtained from embryonic day 18 (E18) rat hippocampus and cultured for 2 weeks exhibited extensive spontaneous synaptic activity. By comparison, neurons obtained from E16 hippocampus expressed very low levels of spontaneous or evok...

متن کامل

Hippocampal brain-derived neurotrophic factor but not neurotrophin-3 increases more in mice selected for increased voluntary wheel running.

Voluntary wheel running in rats increases hippocampal brain-derived neurotrophic factor (BDNF) expression, a neurochemical important for neuronal survival, differentiation, connectivity and synaptic plasticity. Here, we report the effects of wheel running on BDNF and neurotrophin-3 (NT-3) protein levels in normal control mice, and in mice selectively bred (25 generations) for increased voluntar...

متن کامل

Signal transduction events mediated by the BDNF receptor gp 145trkB in primary hippocampal pyramidal cell culture.

The trkB gene encodes a tyrosine kinase receptor, gp145trkB, for brain-derived neurotrophic factor (BDNF) and neurotrophin-4 (NT-4). To understand the role of gp145trkB in the nervous system, we have investigated its expression in embryonic rat hippocampal pyramidal cell cultures and examined the effects of BDNF on signal transduction in the primary neurons. The expression of trkB transcripts w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 104 6  شماره 

صفحات  -

تاریخ انتشار 2010